Thursday, May 29, 2008

Interview with Serguei Popov

I'm glad this imaginative man is doing what he loves instead of what he used to do back in the old Soviet Union. I decided to copy and post the interview in case it disappears. Every potent bioweapon he talks about is practical and buildable using present DNA recombinant technology. But knowing how to avoid the pitfalls he discusses is where expertise, knowledge, and experience come into play. No biologist I know or ever worked with including myself would ever want to do these experiments. I do admire the elegance of the immune mimicry experiments. They pretty much prove what likely happens in certain diseases like multiple schlerosis.

Interview with Serguei Popov
1 November 2000
(Last Updated 19 November 2002)

Serguei Popov is a former scientist in the Russian biological warfare program. After obtaining a degree in biochemistry, he served as a division head in Vector and Obolensk, branches of the Soviet program dedicated to developing genetically enhanced bioweapons. His position allowed him to expand his research into the fields of molecular biology and microbiology. Dr. Popov worked at Vector from 1976 to 1986, then at Obolensk until 1992, when he defected to Britain and later traveled to the United States. H e now works for Hadron, Inc., in microbiology and pharmacology.

Homeland Defense: How did you first become involved in the Soviets’ biological warfare program?

Serguei Popov: I found work by speaking to Lev Sandakchiev, who later became in charge of Vector Institute. Lev wasn’t my friend but I knew him very well. My wife was a student of his at that time, so there was a close connection. Of course, I had no knowledge of what specific programs they had decided to run, but in 1975, Sandakchiev wanted me very much to join his institute. And shortly thereafter I became a scientist for him at Vector.

Homeland Defense: What were some of your earliest projects at Vector?

Serguei Popov: With my background in biochemistry and nucleic acid chemistry, I primarily studied DNA. At that time, it was not a very advanced science, but it was exciting and we tried to create artificial DNA fragments and artificial genes. That was my goal, actually, for the next several years, to make artificial genes. I eventually became the head of a department, with about 50-60 people working with me, half of whom were researchers.

Our approaches were straightforward, using mainly chemical synthesis. It was certainly easier than other available procedures. And chemical synthesis was attractive because it promised to do whatever we wanted. And of course Sandakchiev was interested. That same year, 1976, I became a department head—a department whose whole purpose was to learn how to design artificial genes.

Homeland Defense: Could you describe the different levels of security in your program?

Serguei Popov: Early on, I was already at security level three, but there were at least four levels of security. At level one, the explanation, called “an open legend,” was that there was no biological weapons program at all. The work at the institute was completely academic and open. At level two, there was “a closed legend” explaining that there was a strictly defensive weapons program. At the third level, a particular person was provided with a description of some programs there were and what were the true purposes of these programs. But even this wasn’t the complete truth. The real truth was at level four, which I viewed only briefly much later on. I read these types of documents on only one occasion.

Level number four described the purpose of specific programs and their interconnections. I read some of them, but I didn’t know the whole picture. And I believe that below level four, there was yet another level with a full description of all the bioweapons programs. That was for the government. I didn’t have that big picture. I think that Ken Alibek had that big vision. I have just fragments of that vision.

Homeland Defense: When did you realize you were involved in biological weapons production?

Serguei Popov: It happened both gradually and immediately. With a program like Vector, you know something is going on, but no one tells you what you are going to do, or what the precise purpose of your program is. People get involved step by step, in such a way that there is no way back. You sign papers, and you commit yourself.

Homeland Defense: How did the conditions at Vector compare to the working conditions in Biopreparat?

Serguei Popov: There were subtle differences between the Siberian institution of Vector and the other institutions of Biopreparat. Lev Sandakchiev was a pure scientist and had never been involved previously in biological weapons programs. So, the approach of Vector was the scientific approach. In contrast, the people who organized the Obolensk Institute had experience in biological weapons. The whole mentality was different. In Siberia, there was more a sense of freedom, adventure, excitement, and a sense of discovery. The other place, as I understand it, was much more depressing.

Homeland Defense: At that time, did they tell you the United States was involved in offensive biological weapons?

Serguei Popov: Yes, they did. They always did. And there was no way to explore that point of view, even if we believed otherwise. It was an official statement and no one doubted it.

Homeland Defense: Did they also tell you the United States was working on genetically enhanced weapons?

Serguei Popov: That wasn’t difficult to believe either. The United States is the biggest country, with some of the best scientists, you know. So I had no doubts.

Homeland Defense: So when did you realize the U.S. was out of the biological warfare program?

Serguei Popov: Not until I came to this country. I knew what was written about the U.S. program. But I had a suspicion that nothing was happening in this country when I visited England in 1979. When I visited England, it didn’t take long to pick it up.

Homeland Defense: Dr. Popov, this interview in generally targeted for the benefit of two groups: individuals with strong scientific background, and at the opposite end of the spectrum, policy makers with little background in the sciences but strong interests in the subject matter. But there is likely one question in particular that both sides could agree on in terms of importance. In our discussions with Dr. Alibek, agents like plague, anthrax and smallpox all sounded like very effective weapons.

Serguei Popov: Oh, they are.

Homeland Defense: What then was the purpose of taking this next step, which was really leading-edge science? Why genetic engineering?

Serguei Popov: The answer changed over time. Originally, the Soviet military wanted Vector and Obolensk to produce genetically engineered weapons because they wanted classical agents with new properties like higher pathogenicity and unusual symptoms. And ultimately, we did develop improved classical weapons, with new, unusual properties and resistance to antibiotics.

But it proved to be an illogical way to construct a weapon. There was a belief that new weapons, completely new weapons, without known protection and with new properties, could be superior. The classical agents were there, and they were effective, but initially the military wanted even more effective [ones].

Homeland Defense: Now, Dr. Alibek told us last month about how Biopreparat developed plague that was resistant to our ten most common antibiotics. They couldn’t find a strain of plague resistant to ten, so they took one strain, made it resistant to five, and another to another five. Were you just looking for more effective ways to achieve the same result?

Serguei Popov: Not exactly. When we talk about the whole program of genetically engineered weapons, it was a combination of several projects. For example, projects like “Bonfire” were specifically aimed at developing antibiotically resistant strains.

But there was a much bigger program, called “Factor.” It was a program to create strains with the ability to produce certain biologically active substances as new pathogenic factors. It was not about an improvement of what was generally known. But the final goal of Factor was to create strains with completely new properties.

Homeland Defense: Did Factor also work with the classical agents?

Serguei Popov: Yes. The initial vision was that the old classical biological weapons would acquire new, unusual properties so that, for example, prophylaxis would be difficult. Project goals included high virulence, high stability, and surprising new outcomes for the disease in order to confuse treatment. To achieve those goals, there were several directions. The first was to express short biologically active peptides. Then there was an attempt to introduce toxin genes into those strains. The toxin genes could be short peptide toxins or they could be proteins.

Homeland Defense: In follow-up, you commented on the plague issue, that somehow there was recent success in achieving the properties. Is that what you’re suggesting?

Serguei Popov: Yes. I know at least two examples of plague and smallpox strains which acquired new properties.

Homeland Defense: And what would those properties be?

Serguei Popov: A gene responsible for hemorrhage formation was included in one viral strain and diphtheria toxin gene in another bacterial strain. Later, the Obolensk Institute published their results on anthrax with hemolysin gene. That was the third example. But again, in [the] case of diphtheria toxin, we were more interested in the outcome. The idea was that the vaccine directed against plague would not be effective. When we talked about those problems, there is no clear way to achieve those goals. That’s why the programs constantly changed. The final purpose was the same but the way to achieve success varied.

Homeland Defense: For the benefit of the non-scientific audience, could you describe what a peptide basically is?

Serguei Popov: A peptide is a short protein fragment. Peptides are of the same origin and display properties of proteins. But peptides are more direct in their action and properties. They may target specific functions. We have an example of small peptides like endorphins or enkephalins. Those peptides are approximately 30 amino acids long, and it is about 10 to 20 times [fewer] amino acids than in an average protein. The peptides can interact with a receptor, and they could be produced in a biological way. It’s difficult to produce morphine or other drugs through genetic means. But endorphin peptides have similar properties. In the case of peptides, you make a very small DNA chain that codes for the peptide, and you introduce that gene into the genome of any agent. That’s, in general, all you need.

Small peptides that are neuro-active were capable of changing behavior. Some peptides also created changes of behavior and could have other activities, because they were multifunctional peptides. One example of this was vasopressin, which affects blood pressure. Some peptides were toxins, while others offered a completely new approach for causing autoimmune diseases.

Homeland Defense: What do you think about press reports which suggest it’s possible to take the toxin from cobra venom and splice it into strains of influenza?

Serguei Popov: Those are all an exaggeration, but the idea is correct. I would doubt that cobra venom would be good for biological expression. Toxins must meet numerous specific requirements. But the simplest is that they should be easy to reproduce in biologically active ways. Many toxins are also big molecules, requiring energy and specific biological machinery to build and deliver them to their specific targets. If you consider the simplest toxin, it should be short, it should not be sensitive to the environment, and it should be stable when created inside the body.

Homeland Defense: Did you have any success in creating these?

Serguei Popov: Well, essentially, yes. There are several toxins which are very effective, like peptide toxins from cone snails (conotoxins). However, there were some problems. One of them was that those toxins required two specific cystine bridges. Without those bridges they weren’t biologically active, and that was a complication.

Homeland Defense: But you successfully produced those toxins?

Serguei Popov: Finally, yes. The work on inserting them into smallpox virus continued till the program was terminated.

Homeland Defense: Was it your goal to produce the toxins in quantities sufficient by themselves, or was it always part of your plan for one organism to produce the toxins inside the host?

Serguei Popov: The final goal of Factor was to create microorganisms that produce these toxins inside the host. But there was another program that dealt directly with toxins themselves. It was closely linked to Factor because when we studied the action of toxins engineered into microbes, we had to know their behavior, meaning we needed them in control experiments. The goal of genetically engineering the weapons was to create strains of microorganism producing toxins, such as viruses coding for toxins and ultimately producing toxins.

Homeland Defense: Were you successful? You were talking about genetically engineering strains of the classic biological weapons, so that they were more effective, had different properties, and presented themselves in new, challenging ways. But did you ultimately produce an anthrax or smallpox agent with new properties?

Serguei Popov: Yes; for example, plague with diphtheria toxin has been produced. But the whole program was a difficult task. Some approaches proved to be more successful than others. One tactic, immune mimicry, was to induce an immune response against myelin (found in the body’s nervous system). Because the cloned myelin protein (or its fragment) would be very close in structure to the body’s, host responses against the infection would be directed against the body’s own myelin. As a general principle it’s been discussed for many years, but it’s a very difficult practical task to pull off. Damaged myelin interferes with the transmission from the brain to the peripheral nerves. Most likely its destruction by a microbial agent would induce paralysis and death.

For example: You get the flu, and then you get a complication from the flu. In that case, the immune system, which struggled with flu virus, could target your body as well as flu. When your body tries to heal itself, it actually does the reverse.

In Obolensk, we did extensive experimentation with different bacteria carrying a myelin gene. We finally found that an agent called Legionella created very strong immunological responses. The myelin peptide it produced was very immunogenic because the immune system was activated by the infectious process. That’s what resulted in paralysis and death of infected experimental animals. And what is important as well, a lethal dose was much lower, only a few Legionella cells.

Homeland Defense: Were you able to do that in animal models, like primates?

Serguei Popov: No, just guinea pigs. We were initially ordered to do it, and we did not expect any technical difficulty, but the program had been abruptly stopped at the level of primates.

Homeland Defense: And how long would it take before the target was affected?

Serguei Popov: Essentially, it’s two weeks.

Homeland Defense: And there would be no symptoms before that?

Serguei Popov: No, there wouldn’t, and there would be no agent in your body. It will be completely clear.

Homeland Defense: Doctor Popov, this sounds like a topic that very few people in the areas of biological warfare and homeland defense have discussed. It also sounds like a very challenging weapon to guard against. Could you offer any additional explanations on this subject?

Serguei Popov: Certainly. In general, there is a basic technique to make a viral or bacterial genome easier to manipulate genetically. First you take a gene of interest and you put it in a suitable biological vehicle, often called a vector. Here the gene can be changed, and new properties can be added. More importantly, the vector could be introduced into a bacterial strain, so that the bacteria will carry it, and will acquire the properties to produce the substance the gene codes for. Usually, the bacterial host is harmless, but it can be pathogenic. The gene product can be pathogenic as well. In the above case of the myelin peptide, [the] immune system eliminates the bacteria that produced it, but the peptide triggers a slow destructive immune response. And you are right when you say people in biodefense have never considered this approach.

Let me provide you with another example of a new bioweapon idea, which was under development when I left Russia. Imagine plague carrying a whole copy of a virus. You would expect that people infected with genetically engineered strains of plague would be treated for plague. But the antibiotic treatment would actually make the patient worse because of the antibiotic-induced release of the virus from its copy. A virus infection on top of a bacterial infection may be a situation you will never be able to properly deal with.

Homeland Defense: So you don’t have the virus until you kill the bacteria?

Serguei Popov: No, you don’t.

Homeland Defense: In the exercise we did in May, called “Topoff,” in Denver, we did the simulation of a plague attack, and they chose plague because treatment, in theory, is simple. You just need to provide people with antibiotics. But in your scenario, it wouldn’t matter. No matter how effective we are at controlling it, the more antibiotics you pass out, the more viruses you release?

Serguei Popov: Exactly. Each disease has completely different symptoms and incubation periods, which means treated people will appear healthy and think they are fine. But the treated people are still sick. They simply don’t know it. And a new viral disease can appear after a few days in cases of recombinant plague, or two or three weeks in case of recombinant Legionella. People will experience paralysis, and their central nervous system will cease to function.

Homeland Defense: And how long does it take for this paralysis to take effect?

Serguei Popov: It’s difficult to say, but the disease itself in animals is quite fast (a few days).

Homeland Defense: Some of the peptides you’ve mentioned are extremely novel. But in looking at some of your viral agents, was it more in your interest to create new properties, or to perpetuate existing systems?

Serguei Popov: Initially, the purpose was to bring new properties to existing strains. But the whole program shifted development in the 1980s into new strains. We struggled with the problem of small peptides creating new properties, putting them into active strains. We began to ask ourselves, “Why should we insert peptides into classical strains when we could put them in new strains with new properties, and it could become a weapon even more difficult to deal with or cure?” So the whole plan of the program was shifted to making new virulent strains. In this area, I was relatively successful in making autoimmune peptides effective.

Homeland Defense: Was your specialty in bacterial vectors, or did you look at viral vectors?

Serguei Popov: I studied viral vectors originally. But after I was transferred to the Obolensk Institution, I worked on bacterial vectors as well.

Homeland Defense: You stated earlier that one of the goals of Project Bonfire was vaccine resistance. How much success did your program have in developing a strain of anthrax resistant to vaccinations?

Serguei Popov: I heard a story in 1986 about developing an anthrax resistant strain expressing hemolysin, but [at] that time it wasn’t considered a very productive way of doing vaccine resistance against anthrax, and that was in place a long time ago. I did not think they would find anything very exciting about this. Surprisingly, it finally worked.

Homeland Defense: Out of curiosity, was tularemia an interest of your program?

Serguei Popov: Well it was, but it was considered an old workhorse, an old vehicle. In terms of genetic engineering with tularemia, there was little activity.

Homeland Defense: How about mycoplasm?

Serguei Popov: We didn’t try that. I know that they looked at it, but that was in a different institute.

Homeland Defense: Did your program share work with allied countries, or was it only with Russian scientists?

Serguei Popov: No, my program only employed Russians. And there was no change in this policy up until 1992, when I left Russia.

Homeland Defense: So you did no work except for biological weapons work?

Serguei Popov: Yes, but it was not easy to distinguish between pure science and military science applications. In a way, everything had military usage. Anything considered “pure science” was questionable. Take an example of a recombinant interferon project I was in charge of at Vector. It was believed to be a potent antiviral drug for troops’ protection.

Homeland Defense: How much control did the Soviet Union have over your life? Was your travel restricted?

Serguei Popov: Traveling abroad was completely impossible. I managed it once and that was it. But travel inside the country was restricted in terms of procedures. You had to be back in the lab by certain times. That type of thing took place frequently.

Homeland Defense: When you began this in the 1970s and 1980s, you were involved in what we would call leading-edge technologies. Only Russia, the United States, and maybe a few other countries like the United Kingdom could reasonably succeed in this area. Because of the biotechnology revolution, do you think this type of research is continuing today in other countries like Iran, China, India, or North Korea?

Serguei Popov: I think the answer to your question is: no doubt. But the knowledge is not there, I hope. Creating biological agents is not only technology and procedures. But the most important thing is what to do, and how to achieve success.

Homeland Defense: Do you believe it’s possible some of these countries have recruited former colleagues of yours to work for them in this area?

Serguei Popov: Oh, I’m pretty sure they did.

Homeland Defense: And how many people worked in your program at Vector, at your level and with your expertise?

Serguei Popov: It’s hard to estimate. I know there were several institutions, with several labs in each. There were probably a few thousand researchers. But at my level, there were maybe several dozen, as of 1992.

Homeland Defense: Russia has ostensibly been opened to travel, but we assume someone with your skills would probably have been discouraged from leaving. Can you tell us about how you came out?

Serguei Popov: Well, of course it wasn’t the straight way. When I recognized that everything was collapsing and the KGB was having problems maintaining control, I decided it was a good time to get out. My problem, however, was that I had no money at all, not even to buy food. My only connection outside Russia was in England. I had visited England once in 1979 and I had some good friends over there in the scientific community. In fact, that’s why [the] Soviets didn’t let me join the communist party in the Soviet Union.

So I wrote those friends by sending them email and faxes. Finally, they found some money for me to conduct research, but still didn’t have money for tickets. At the time, I only had four dollars in my pocket.

But the Royal Society promised to pay me in England. So I negotiated a short-term pass to England, and the KGB agreed to let me go. They may have agreed because they wanted the money that would come from the science I promised them. So they let me go. I just didn’t go back.

Homeland Defense: Do you feel like you’ve been threatened since then? Did they follow you?

Serguei Popov: They followed my wife. When I left my home, I had to leave my family and my children in the Soviet Union for about a year. She knew I was going. But that was the only way to earn money, so that we could purchase their passports.

Homeland Defense: When you left, were you debriefed by British or American intelligence services?

Serguei Popov: Nobody was interested. Not a single person. Only much later, in Dallas, Texas, was I debriefed.

Homeland Defense: So where have you been working and what have you been doing since you left Russia in 1992?

Serguei Popov: Well, first I came to England. The Medical Research Council arranged for me to study molecular biology in Cambridge, and I studied HIV virus for six months there. Then I traveled to Dallas, and I researched microbiology and pharmacology. And today I work for Hadron.

Homeland Defense: So to the best of your knowledge, the genetically engineered agents were not weaponized by the military?

Serguei Popov: That is correct, but with a few exceptions. I think plague with diphtheria toxin was weaponized. That’s my impression. The antibiotic-resistant strains of plague and anthrax were also weaponized. But as far as the Factor program is concerned, not very much was weaponized. I also know that hemorrhage gene was introduced into smallpox virus; I don’t know the final results.

Homeland Defense: Did you work on the smallpox virus yourself?

Serguei Popov: Yes. But that project belonged primarily to another person. And I don’t know if they decided to continue this work.

Homeland Defense: There have been rumors of combining smallpox and Ebola after some fashion. Some have suggested making an agent as contagious as smallpox and as deadly [as] Ebola. Is such a thing possible?

Serguei Popov: This idea could be accomplished on a genetically defined level, or by simply combining both. The physical combination was the subject of discussion. But not everybody liked it because of the difficulties involved.

Homeland Defense: Did you hear about this in Russia or after you came here?

Serguei Popov: From 1986 I heard some rumors on these types of agents. Both bacterial and viral combinations were discussed, but I was not included in these talks. To be honest, I had little interest in this area.

Homeland Defense: You mentioned the development of “subtle agents,” using biopeptides and bioregulators. Did Vector also work on similar agents that would affect people from a psychological perspective?

Serguei Popov: Yes, endorphins, enkephalins, and other neuromodulating peptides. It has been discovered that personalities could be adjusted with these agents. For example, you could make people more aggressive. Or you could create feelings of insomnia, where people wanted to sleep, but would never feel tired.

Homeland Defense: In your program, who decided where the work would go? Was it the military, the government, or the scientists?

Serguei Popov: Factor was literally created overnight in a Moscow kitchen by some military officers, sometime around 1978. From that point on, it became an official program, but they always took feedback from scientists. They realized it was the perfect way to make new agents, which could be essentially undetectable, and furthermore could get around the biological weapons treaty. Many of the agents created by Factor would be very dangerous, but they would not be illegal.

Editor’s note: The Journal of Homeland Defense disagrees with the Soviet claim that such activity was legal. The Biological and Toxin Weapons Convention prohibits any type of activity (development, production, or stockpiling) regarding the offensive use of biological or toxin weapons. Article I from the convention is provided at the end of the interview for the readers’ perusal.

Homeland Defense: You’ve mentioned quite a few unsettling agents in today’s discussion. But we want to be clear on this subject: were any of these agents weaponized in mass quantities?

Serguei Popov: No, they were not. We ceased this work around 1991, after funding was cut.

Homeland Defense: What happened to the research related to these projects?

Serguei Popov: Everything was archived and put into storage, and I believe it is still there.

Homeland Defense: This information sounds sensitive, if not dangerous. Do you know if this data is currently secure?

Serguei Popov: To the best of my knowledge the information is still safe.

Homeland Defense: What about your former colleagues? Do you believe any of this work you’ve discussed is still going on?

Serguei Popov: Yeah, I’m pretty sure. I don’t have any direct evidence. But recently I’ve begun looking up what my former colleagues have published. All I found were a few lousy, lousy papers. This suggests they are currently working on something they cannot publish. And that’s a good indication the program is still functioning.

Homeland Defense: Those papers are just cover stories?

Serguei Popov: Yes. That’s all they are allowed to publish.

Homeland Defense: Finally, we should mention that this is your first public interview since you departed the Soviet Union. You said that the U.S. Intelligence Community debriefed you. Were the people who conducted this interview fully qualified to conduct your briefing? Did they have the proper scientific background to fully appreciate the nature of your previous work with the Soviet Union?

Serguei Popov: No, they did not sound like scientists. However, I told them about the directions of my work in the Soviet Union. They were mainly concerned with the issues of possible terrorist attack using bioweapons.

Homeland Defense: And with those thoughts we will conclude. Thank you again for your time and sharing your experiences, Dr. Popov. We believe both the scientific community and the public at large will benefit from your candidness.

Convention on the Prohibition of the Development, Production and Stockpiling of Bacteriological Biological and Toxin Weapons and on Their Destruction
(The Biological Weapons Convention)
10 April 1972

Article I

Each State Party to this Convention undertakes never in any circumstance to develop, produce, stockpile or otherwise acquire or retain:

(1) Microbial or other biological agents, or toxins whatever their origin or method of production, of types and in quantities that have no justification for prophylactic, protective or other peaceful purposes;

(2) Weapons, equipment or means of delivery designed to use such agents or toxins for hostile purposes or in armed conflict.


Comments: Post a Comment

Links to this post:

Create a Link

<< Home

This page is powered by Blogger. Isn't yours?